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ABSTRACT
Accurate user interest modeling is vital for recommendation scenar-
ios. One of the effective solutions is the sequential recommendation
that relies on click behaviors, but this is not elegant in the video feed
recommendation where users are passive in receiving the streaming
contents and return skip or no-skip behaviors instead of active click
behavior. Here skip and no-skip behaviors can be treated as negative
and positive feedback, respectively. Indeed, skip and no-skip are not
simply positive or negative correlated, so it is challenging to capture
the transition pattern of positive and negative feedback. To do so,
FeedRec has exploited a shared vanilla Transformer and grouped
each feedback into different Transformers. Indeed, such a task may
be challenging for the vanilla Transformer because head interaction
of multi-heads attention does not consider different types of feed-
back. In this paper, we propose Dual-interest Factorization-heads
Attention for SequentialRecommendation (short for DFAR) consist-
ing of feedback-aware encoding layer, dual-interest disentangling
layer and prediction layer. In the feedback-aware encoding layer,
we first suppose each head of multi-heads attention can capture
specific feedback relations. Then we further propose factorization-
heads attention which can mask specific head interaction and inject
feedback information so as to factorize the relation between dif-
ferent types of feedback. Additionally, we propose a dual-interest
disentangling layer to decouple positive and negative interests be-
fore performing disentanglement on their representations. Finally,
we evolve the positive and negative interests by corresponding tow-
ers whose outputs are contrastive by BPR loss. Experiments on two
real-world datasets show the superiority of our proposed method
against state-of-the-art baselines. Further ablation study and visu-
alization also sustain its effectiveness. We release the source code
here: https://github.com/tsinghua-fib-lab/WWW2023-DFAR.
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Figure 1: Illustration of click-based sequential recommen-
dation and our dual-interest sequential recommendation
which is hybrid with positive and negative feedback.
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1 INTRODUCTION
Online sequential recommendation [32] has achieved great success
for its time-aware personalized modeling and has been widely ap-
plied in Web platforms, including micro-video, news, e-commerce,
etc. Especially in today’s video feed recommendation, users are
attracted immensely by video streaming which can be treated as a
sequence of items. Formally speaking, the sequential recommenda-
tion is defined as predicting the next interacted item by calculating
the matching probability between historical items and the target
item. As shown in Figure 1 (a), existing sequential recommendation
models often exploit click behaviors of users to infer their dynamic
interests [11, 14, 31, 41, 42], the optimization of which samples
un-clicked items as negative feedback. However, such an approach
only inputs positive items into the sequential model, and negative
items are sampled as target items, ignoring the transition pattern
between historical positive and negative items.

In the video feed recommendation where a single item is exposed
each time, users either skip or do not skip the recommended items,
as illustrated in Figure 1 (b). Skip can be treated as a kind of negative
feedback which means users don’t want to receive certain items,
while no-skip can be treated as a kind of positive feedback. That is to
say, users are passive in receiving the recommended items without
providing active click behaviors [10, 18, 22] in such video feed
recommendations. However, the existing click-based sequential
recommendation does not consider the transition pattern between
positive and negative items. Indeed, there are two key challenges
when modeling positive and negative feedback in one sequence.
• Complex transition between positive and negative feed-
back. The transition pattern among interacted items has become
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far more complex due to negative feedback. A user may provide
negative feedback only because she has consumed a very sim-
ilar item before, which makes accurate modeling of transition
essential and challenging.

• Mixed interest in one behavioral sequence. The negative
feedback in the behavioral sequence brings significant challenges
to interest learning. The traditional methods of sequential recom-
mendation always conduct a pooling operation on user sequence
to obtain the users’ current interest, which will fail when the
sequence is hybrid with positive and negative signals.

To address the above challenges, in this work, we propose a
model named Dual-interest Factorization-heads Attention for Se-
quential Recommendation (short for DFAR), further extracting the
transition pattern and pair-wise relation between positive and neg-
ative interests. To address the first challenge, in the feedback-aware
encoding layer, we assume each head of multi-head attention [28]
tends to capture specific relations of certain feedback [30]. As differ-
ent heads of multi-head attention [28] are independent, it may fail
to capture the transition pattern between different feedback when
positive feedback and negative feedback are indeed not independent
of each other. Thus we exploit talking-heads attention [25] to im-
plicitly extract the transition pattern between positive and negative
historical items. However, talking-heads attention may mix differ-
ent heads toomuchwithout sufficient prior knowledge. To explicitly
extract the transition pattern between positive and negative histor-
ical items, we further propose feedback-aware factorization-heads
attention which can even incorporate the feedback information into
the head interaction. To address the second challenge, we propose a
dual-interest disentangling layer and prediction layer, respectively,
to disentangle and extract the pair-wise relation between positive
and negative interests. Specifically, we first mask and encode the
sequence hybrid with positive feedback and negative feedback into
two single interest representations before performing disentangle-
ment on them to repel the dissimilar interests. Then we perform
a prediction of each interest with the corresponding positive or
negative tower and apply contrastive loss on them to extract their
pair-wise relation.

In general, we make the following contributions in this work.

• We have taken the pioneering step of fully considering the mod-
eling of negative feedback, along with its impact on transition
patterns, to enhance sequential recommendation.

• We propose a feedback-aware encoding layer to capture the tran-
sition pattern, dual-interest disentangling layer and prediction
layer to perform disentanglement and capture the pair-wise rela-
tion between positive and negative historical items.

• We conduct experiments on one benchmark dataset and one col-
lected industrial dataset, where the results show the superiority
of our proposed method. A further ablation study also sustains
the effectiveness of our three components.

2 PROBLEM FORMULATION
Click-based Sequential Recommendation.Given item sequence
I𝑢 = (𝑖1, 𝑖2, . . . , 𝑖𝑡 ) with only positive feedback, the goal of tradi-
tional click-based sequential recommendation is accurately predict-
ing the probability that given user 𝑢 will click the target item i.e.,

𝑖𝑡+1. The traditional click-based sequential recommendation can be
formulated as follows.
Input: Item sequence I𝑢 = (𝑖1, 𝑖2, . . . , 𝑖𝑡 ) with only positive feed-
back for a given user 𝑢.
Output: The predicted score that the given user 𝑢 will click the
target item 𝑖𝑡+1.
Dual-interest Sequential Recommendation.Given item sequence
I𝑢 = (𝑖1, 𝑖2, . . . , 𝑖𝑡 ) with both positive and negative feedback, the
dual-interest sequential recommendation aims to better predict the
probability that given user 𝑢 will skip or not skip the target item
i.e., 𝑖𝑡+1. The dual-interest sequential recommendation with both
positive and negative feedback can be formulated as follows.
Input: Item sequenceI𝑢 = (𝑖1, 𝑖2, . . . , 𝑖𝑡 ) with positive and negative
feedbacks for a given user 𝑢.
Output: The predicted score that the given user 𝑢 will skip or do
not skip the target item 𝑖𝑡+1.

3 METHODOLOGY
Our model captures the relation between positive feedback and neg-
ative feedback at the transition level and interest level of sequential
recommendation, respectively, by the proposed Feedback-aware
Encoding Layer, Dual-interest Disentangling Layer and Prediction
Layer, as shown in Figure 2.
• Feedback-aware Encoding Layer. We build item embeddings
by item IDs and label embeddings by item feedback and further
propose feedback-aware factorization-heads attention to capture
the transition pattern between different feedback.

• Dual-interestDisentangling Layer.Wemask the sequence hy-
brid with both positive and negative feedback into two sequences
with solely positive or negative feedback. After encoding two
split sequences with independent factorization-heads attention
to extract the positive and negative interests, we then disentangle
them to repel the dissimilar interests.

• Dual-interest Prediction Layer. We further extract the posi-
tive and negative interests with independent towers and then
perform contrastive loss on them to extract the pair-wise relation.

3.1 Feedback-aware Encoding Layer
In the feedback-aware encoding layer, we first inject each histori-
cal item embedding with corresponding feedback embeddings to
incorporate the feedback information into each historical item em-
bedding. Then we further propose talking-heads attention and
feedback-aware factorization-heads attention to capture the transi-
tion pattern between positive and negative historical items.

3.1.1 Feedback-aware Embedding Layer. To fully distinguish
positive and negative feedback, we build a label embedding matrix
L ∈ R2×𝐷 , besides the item embedding matrix E ∈ R𝑚×𝐷 . Here𝑚
denotes the number of items, and 𝐷 is the dimensionality for the
hidden state. Then we inject the feedback information into the item
embedding and obtain the feedback-aware input embeddings as the
model input. Therefore, given item sequence I𝑢 = (𝑖1, 𝑖2, . . . , 𝑖𝑡 ),
we can obtain the feedback-aware item embeddings E𝑓 ∈ R𝑇×𝐷 as:

E𝑓 = [E𝑖1 ,E𝑖2 , . . . ,E𝑖𝑡 ] + [L𝑦𝑢,𝑖1 , L𝑦𝑢,𝑖2 , . . . , L𝑦𝑢,𝑖𝑡 ], (1)
where {𝑦𝑢,𝑖1 , 𝑦𝑢,𝑖2 , · · · , 𝑦𝑢,𝑖𝑡 } are feedback of items {𝑖1, 𝑖2, · · · , 𝑖𝑡 }.
Here 𝑦𝑢,𝑖1 = 1 if 𝑖1 is the no-skip item, and 𝑦𝑢,𝑖1 = 0 if 𝑖1 is the skip
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Figure 2: Illustration of DFAR. (𝑖) Feedback-aware Encoding Layer is linked after the Feedback-aware Embedding Layer where
each historical item is injected with a label embedding according to the corresponding feedback; It consists of linear transfor-
mation and feedback-aware factorization-heads attention. In the linear transformation, input embeddings are transformed
into query, key and value matrices. In feedback-aware factorization-heads attention, the transition relation between different
items is factorized into different heads which are masked according to the positive or negative feedback. (𝑖𝑖) Dual-interest
Disentangling Layer decouples positive and negative interests and performs disentanglement to repel the dissimilar represen-
tations of different feedback; (𝑖𝑖𝑖) Dual-interest Prediction Layer evolves positive and negative interests with corresponding
towers and perform BPR loss to capture the pair-wise relation.

item. Note that if the sequence length is less than 𝑡 , we can pad E𝑓

with zero embedding [14].
3.1.2 Talking-Heads Attention. After obtaining the input em-
beddings for positive and negative historical items, we then cap-
ture the transition pattern between them. The existing work, Fee-
dRec [37], exploits vanilla Transformer to roughly capture this

transition pattern, of which multi-head attention [14] is the essen-
tial part, having the following equation:

S = MHA(Q,K,V) =
[
A𝑀𝐻𝐴1 V1, . . . ,A𝑀𝐻𝐴𝐻

V𝐻
]
W0, (2)

A𝑀𝐻𝐴
ℎ

= softmax
(
QℎKℎ𝑇√

𝑑

)
, (3)



Qℎ = QW𝑄

ℎ
,Kℎ = KW𝐾

ℎ
,Vℎ = VW𝑉

ℎ
, (4)

where ℎ ∈ {1, 2, · · · , 𝐻 } is the number of heads.W0 ∈ R𝐻𝐷×𝐷 and
W𝑄

ℎ
, W𝐾

ℎ
, W𝑉

ℎ
∈ R𝐷×𝐷 are parameters to be learned. MHA means

multi-heads attention [28]. However, different heads of multi-head
attention are independent of each other, sharing no information
across heads. If assuming different heads capture specific relations
between different feedback, then this means there is no information
sharing across different feedback. Thus we first propose talking-
heads attention [25] to address this issue as below.

S = THA(Q,K,V) =
[
A𝑇𝐻𝐴1 V1, . . . ,A𝑇𝐻𝐴𝐻

V𝐻
]
W0, (5)


A1
A2
.
.
.

A𝐻 ′


= W𝑇𝐻𝐴



Q1K1𝑇√
𝑑

Q2K2𝑇√
𝑑
.
.
.

Q𝐻K𝐻
𝑇

√
𝑑


, (6)


A𝑇𝐻𝐴1
A𝑇𝐻𝐴2

.

.

.

A𝑇𝐻𝐴
𝐻


= W𝑆

𝑇𝐻𝐴


softmax (A1)
softmax (A2)

.

.

.

softmax (A𝐻 ′)


, (7)

whereW𝑇𝐻𝐴 ∈ R𝐻 ′×𝐻 ,W𝑆
𝑇𝐻𝐴

∈ R𝐻×𝐻 ′ andW0 ∈ R𝐻𝐷×𝐷 are pa-
rameters to be learned. Here THA refers to talking-heads attention.
However, the interaction between different heads in talking-heads
attention is implicit, which may confuse the task for each head
and result in overfitting. Not to mention, the two additional linear
transformations (i.e. Eq.(6) and Eq.(7)) of talking-heads attention
will increase the computation cost.

3.1.3 Feedback-aware Factorization-headsAttention. In this
part, we factorize the interaction between positive and negative
feedback. Traditional multi-heads attention assigns similar items
with higher attention weights. However, in our problem with both
positive and negative feedback, two similar items may have differ-
ent attention weights due to the feedback they have. For example,
an NBA fan skips the recommended video about basketball when
he/she has watched a lot of basketball videos. But he/she engages
in the video about basketball when he/she only has watched a
few videos about basketball. In the first case we should repel the
representations between historical basketball videos and target bas-
ketball videos, while in the second case we should attract them.
That is to say, it is necessary to inject the user’s feedback into the
transition pattern between different feedback. Here we suppose dif-
ferent heads can represent different transition patterns for different
feedback [30]. To explicitly factorize interaction across different
heads, we further propose factorization-heads attention as:

S = FHA(Q,K,V) =
[
A𝐹𝐻𝐴1,1 V1, . . . ,A𝐹𝐻𝐴𝐻,𝐻

V𝐻
]
W0, (8)

A𝐹𝐻𝐴
ℎ1,ℎ2

= softmax
(
Qℎ1Kℎ2

𝑇

√
𝑑

)
, (9)

where ℎ1, ℎ2 ∈ {1, 2, · · · , 𝐻 }. W0 ∈ R𝐻𝐷×𝐷 are parameters to be
learned. Here FHA is our proposed factorization-heads attention.
The factorization-heads attention can represent 𝐻 × 𝐻 relations
by 𝐻 heads. That is to say, our factorization-heads attention can

𝐐!

𝐐"

𝐊!#

𝐊"
#

Query matrix of
positive Item 𝑖

Key matrix of 
negative Item 𝑗

Masked 
interaction

Preserved 
interaction

Negative head

Positive head

Figure 3: Illustration of label mask Mℎ1,ℎ2 on head interac-
tion. Here we show the comprehensible case with two heads,
where the first half of heads, i.e. head 1, represents negative
head and second half of heads, i.e. head 2, represents posi-
tive head.

reduce
√
𝐻 times parameters if we want to represent 𝐻 head in-

teraction relations like talking-heads attention or multi-heads at-
tention. Besides, to further inject the prior feedback knowledge
into the factorization-heads attention, we propose feedback-aware
factorization-heads attention with a label mask Mℎ1,ℎ2 ∈ {0, 1}𝑡×𝑡
as:

S = FFHA(Q,K,V) =
[
A𝐹𝐹𝐻𝐴1,1 V1, . . . ,A𝐹𝐹𝐻𝐴𝐻,𝐻

V𝐻
]
W0, (10)

A𝐹𝐹𝐻𝐴
ℎ1,ℎ2

= softmax
(
Mℎ1,ℎ2

Qℎ1Kℎ2
𝑇

√
𝑑

)
, (11)

whereMℎ1,ℎ2,𝑖, 𝑗 = 1, ifℎ1 ∈ { 𝑦𝑢,𝑖𝐻2 +1, 𝑦𝑢,𝑖𝐻2 +2, · · · , (𝑦𝑢,𝑖+1)𝐻2 }, ℎ2 ∈
{ 𝑦𝑢,𝑗𝐻2 +1, 𝑦𝑢,𝑗𝐻2 +2, · · · , (𝑦𝑢,𝑗+1)𝐻2 }, 𝑖 ∈ {1, 2, · · · , 𝑡}, 𝑗 ∈ {1, 2, · · · , 𝑡}
and Mℎ1,ℎ2,𝑖, 𝑗 = 0, otherwise. Here the first half of heads w.r.t.
{1, 2, · · · , 𝐻2 } represent negative heads and second half of heads
w.r.t. {𝐻2 + 1, 𝐻2 + 2, · · · , 𝐻 } represent positive heads. For example,
as shown in Figure 3, if item 𝑖 is positive and item 𝑗 is negative (i.e.,
𝑦𝑢,𝑖 = 1 and 𝑦𝑢,𝑗 = 0), ℎ1 in positive half and ℎ2 in negative half
will be preserved, i.e., M2,1,𝑖, 𝑗 = 1, andM1,1,𝑖, 𝑗 ,M1,2,𝑖, 𝑗 ,M2,2,𝑖, 𝑗 = 0.

Besides, FFHA is our proposed feedback-aware factorization-
heads attention. Apart from the advantage of explicit interaction be-
tween different heads, unlike talking-heads attention, our factorization-
heads attention also improves the multi-heads attention without
high computation cost. We feed the input embedding into the
feedback-aware factorization attention module as:

S = FFHA(E𝑓 , E𝑓 , E𝑓 ), (12)

where S are the obtained feedback-aware sequential representations.
We put the pseudocode of FHA at Appendix A.1 and compare its
complexity with MHA and THA at Appendix A.1.5.

3.2 Dual-interest Disentangling Layer
Though feedback-aware factorization-heads attention has factor-
ized the transition relation between positive feedback and negative
feedback, their interest-level relations require further extracting. In
this part, we decouple the positive and negative interests and then
perform disentanglement on them to repel the dissimilar interests.

3.2.1 Dual-interestDecouplingAttention. After capturing the
transition pattern between positive feedback and negative feedback,
we then filter out each feedback by a corresponding feedback mask
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as follows,
S𝑃 = [S𝑖1 , S𝑖2 , . . . , S𝑖𝑡 ] ∗ [𝑦𝑢,𝑖1 , 𝑦𝑢,𝑖2 , . . . , 𝑦𝑢,𝑖𝑡 ],

S𝑁 = [S𝑖1 , S𝑖2 , . . . , S𝑖𝑡 ] ∗ (1 − [𝑦𝑢,𝑖1 , 𝑦𝑢,𝑖2 , . . . , 𝑦𝑢,𝑖𝑡 ]),
(13)

which are then fed into the corresponding factorization-heads at-
tention modules to enhance the transition pattern learning for each
feedback as:

S𝑃 = FHA(S𝑃 , S𝑃 , S𝑃 ), S𝑁 = FHA(S𝑁 , S𝑁 , S𝑁 ), (14)

where S𝑃 (or S𝑁 ) are the single-feedback sequential representations
for positive feedback (or negative feedback). In the subsequent
section, we will exploit these filtered representations to further
extract the interest-level relations.

3.2.2 Dual-interest Aggregation and Disentanglement. The
positive and negative interests of a given user should be distin-
guished from each other. Hence we aim to repel the positive and
negative representations of corresponding interests. Specifically,
we assume the target item is possibly either positive or negative.
Then we assign the target item with positive and negative label
embeddings, respectively, in positive and negative assumed cases.
To calculate the attention scores of positive and negative historical
items, we fuse them with the target item in assumed positive and
negative cases as below.

A𝑃 = MLP
(
(E𝑖𝑡+1 + L1)∥S𝑃

)
,A𝑁 = MLP

(
(E𝑖𝑡+1 + L0)∥S𝑁

)
,

(15)
where A𝑃 and A𝑁 ∈ R𝑡×𝐷 are the positive and negative attention
scores. MLP is the multi-layer perceptron. Here L1 and L0 are the
label embeddings for positive and negative feedback, respectively.
With the calculated attention scores by (15), we can then obtain
the single-feedback aggregated representations for positive and
negative items, respectively, as,

F𝑃 = softmax
(
A𝑃

)
S𝑃 , F𝑁 = softmax

(
A𝑁

)
S𝑁 , (16)

f𝑃 =

𝑡∑︁
𝑗=1

F𝑃𝑗 , f
𝑁 =

𝑡∑︁
𝑗=1

F𝑁𝑗 , (17)

which are then further disentangled with cosine distance as:

L𝐷 =
f𝑃 · f𝑁f𝑃  × f𝑁  . (18)

where ∥ · ∥ is the L2-norm. By this disentangling loss, we can
repel the aggregated positive and negative representations so as to
capture the dissimilar characteristics between them.

3.3 Dual-interest Prediction Layer
In this section, we predict the next item of different interests by pos-
itive and negative towers. Finally, we further perform contrastive
loss on the outputs of positive and negative towers so as to extract
the pair-wise relation between them.

3.3.1 Dual-interest Prediction Towers. To extract the positive
and negative interests, we fuse the feedback-aware sequential repre-
sentations, single-feedback sequential representations, and single-
feedback aggregated representations into the corresponding pos-
itive or negative prediction tower. Before feeding different repre-
sentations into the final prediction towers, we first aggregate part

of them by the sum pooling as:

s =
𝑡∑︁
𝑗=1

S𝑗 , s𝑃 =

𝑡∑︁
𝑗=1

S𝑃𝑗 , s
𝑁 =

𝑡∑︁
𝑗=1

S𝑁𝑗 ,

which are then finally fed into the positive and negative prediction
towers as:

logit𝑃𝑢,𝑡 = MLP
(
s∥s𝑃 ∥f𝑃 ∥(E𝑖𝑡+1 + L1)

)
, (19)

logit𝑁𝑢,𝑡 = MLP
(
s∥s𝑁 ∥f𝑁 ∥(E𝑖𝑡+1 + L0)

)
. (20)

where logit𝑃𝑢,𝑡 and logit𝑁𝑢,𝑡 are positive and negative predicted logits
for user𝑢 on time step 𝑡 , aiming to capture the positive and negative
interests, respectively. Here f𝑃 and f𝑁 are pooled at Eq.(17).

3.3.2 Pair-wise Contrastive Loss. When the target item is pos-
itive, the prediction logit of the positive tower will be greater than
that of the negative tower, and vice versa. After obtaining the posi-
tive and negative prediction logits, we then perform BPR loss [23]
on them as:

L𝐵𝑃𝑅 =

{
− log(𝜎 (logit𝑃𝑢,𝑡 − logit𝑁𝑢,𝑡 )), 𝑦𝑢,𝑡 = 1,

− log(𝜎 (logit𝑁𝑢,𝑡 − logit𝑃𝑢,𝑡 )), 𝑦𝑢,𝑡 = 0.
(21)

where 𝜎 denotes the sigmoid function. With this BPR loss, we can
extract the pair-wise relations between positive and negative logits.

3.4 Joint Optimization
Though we have positive and negative towers, in the optimization
step, we only need to optimize the next item prediction loss with
the positive tower as:

L = − 1
|R |

∑︁
(𝑢,𝑖𝑡 ) ∈R

(
𝑦𝑢,𝑡 log𝑦𝑃𝑢,𝑡 +

(
1 − 𝑦𝑢,𝑡

)
log

(
1 − 𝑦𝑃𝑢,𝑡

))
, (22)

where 𝑦𝑃𝑢,𝑡 = 𝜎 (logit𝑃𝑢,𝑡 ) and R is the training set. The negative
prediction tower 𝑦𝑁𝑢,𝑡 indeed will be self-supervised and optimized
by the contrastive loss of Eq.(21). After obtaining the main loss for
the next item prediction, disentangling loss for repelling represen-
tations and BPR loss for pair-wise learning, we can then jointly
optimize them as:

L 𝐽 = L + _𝐵𝑃𝑅L𝐵𝑃𝑅 + _𝐷L𝐷 + _∥Θ∥, (23)

where _𝐵𝑃𝑅 and _𝐷 are hyper-parameters for weighting each loss.
Here _ is the regularization parameter, and Θ denotes the model
parameters to be learned.

4 EXPERIMENTS
In this section, we experiment on a public dataset and an industrial
dataset, aiming to answer the following research questions (RQ):
• RQ1: Is the proposed DFAR effective when compared with the
state-of-the-art sequential recommenders?

• RQ2 : What is the effect of our proposed feedback-aware en-
coding layer, dual-interest disentangling layer and prediction
layer?

• RQ3 : How do the heads of proposed feedback-aware factorization-
heads attention capture the transition pattern between different
feedback?

17253
高亮文本

17253
高亮文本



Table 1: Micro-video and Amazon data statistics.

Dataset Micro-video Amazon
#Users 37,497 6,919
#Items 129,092 28,695

#Records Positive 6,413,396 99,753
Negative 5,448,693 20,581

Avg. records per user 316.35 17.39

• RQ4: How does the proposed method perform compared with
the sequential recommenders under different sequence lengths?

We also look into the question: "how do the auxiliary loss for dis-
entanglement and pair-wise contrastive learning perform under
different weights?" in Appendix A.4.

4.1 Experimental Settings
4.1.1 Datasets. The data statistics of our experiments are illus-
trated in Table 1 where Micro-video is a collected industrial dataset
and Amazon is the public benchmark dataset which is widely used
in existing work for sequential recommendation [19]. The detailed
descriptions of them are as below.
Micro-video This is a popular micro-video application dataset,
which is recorded from September 11 to September 22, 2021. In
this platform, users passively receive the recommended videos,
and their feedbacks are mostly either skip or no-skip. Skip can be
treated as a form of negative feedback, and no-skip can be treated as
a form of positive feedback. That is to say, we have hybrid positive
and negative feedback in this sequential data which is very rare in
modern applications.
Amazon1 This is Toys domain from awidely used public e-commerce
dataset in recommendation. The rating score in Amazon ranges
from 1 to 5, and we treat the rating score over three and under two
as positive and negative feedback, respectively, following existing
work DenoisingRec [33] which is not for the sequential recommen-
dation.

For the Micro-video dataset, interactions before and after 12 pm
of the last day are split as the validation and test sets, respectively,
while interactions before the last day are used as the training set.
For the Amazon dataset, we split the last day as the test set and the
second last day as the validation set, while other days are split as
the training set.

4.1.2 Baselines andEvaluationMetrics. We compare our DFAR
with the following state-of-the-art methods for sequential recom-
mender systems.
• DIN [42]: It aggregates the historical items via attention score
with the target item.

• Caser [27]: It captures the transition between historical items
via convolution.

• GRU4REC [11]: It captures the transition between historical
items via GRU [5].

• DIEN [41]: It captures the transition between historical items
via interest extraction and evolution GRUs [5].

• SASRec [14]: It captures the transition between historical items
via multi-heads attention [28].

1https://www.amazon.com

• THA4Rec: It means talking-heads attention [25] for the sequen-
tial recommendation, which is firstly applied in the recommen-
dation by us.

• DFN [38]: It purifies unclick (weak feedback) by click (strong
positive feedback) and dislike (strong positive feedback).

• FeedRec [37]: It further performs disentanglement on the weak
positive and negative feedback.
Besides, Widely-used AUC and GAUC [9] are adopted as accu-

racy metrics here while MRR@10 and NDCG@10 [19] are used as
ranking metrics for performance evaluation. The detailed illustra-
tion of them is in Appendix A.2.

4.1.3 Hyper-parameter Settings. Hyper-parameters are gener-
ally set following the default settings of baselines. We strictly follow
existing work for sequential recommendation [19] and leverage
Adam [15] with the learning rate of 0.0001 to weigh the gradients.
The embedding sizes of all models are set as 32. We use batch
sizes 20 and 200, respectively, on the Micro-video and Amazon
datasets. We search the loss weights for pair-wise contrastive loss
in [10−4, 10−3, 10−2, 10−1].

4.2 Overall Performance Comparison(RQ1)
We compare our proposed method with eight competitive baselines,
and the results are shown as Table 2, where we can observe that:
• Our method achieves the best performance. The results on
two datasets show that our DFAR model achieves the best per-
formance compared with these seven baselines on all metrics.
Specifically, GAUC is improved by about 2.0% on the Micro-video
dataset and 0.5% on the Amazon dataset and when comparing
DFAR with other baselines. Please note that 0.5% improvement
on GAUC could be claimed as significant, widely acknowledged
by existing works [42]. Besides, the improvement is more sig-
nificant in the Micro-video with more negative feedback, which
means incorporating the negative feedback into the historical
item sequence can boost the recommendation performance.

• Existing work roughly captures the relation between posi-
tive feedback and negative feedback. FeedRec and DFN even
underperform some traditional sequential recommendation mod-
els like GRU4REC and Caser in Amazon dataset. Besides, though
they outperform other baselines in Micro-video dataset, the im-
provement is still slight. In other words, their designs fail to
capture the relation between positive feedback and negative feed-
back, which motivates us to further improve them from transition
and interest perspectives.

4.3 Ablation Study (RQ2)
We further study the impact of four proposed components as Table 3,
where FHA represents the factorization-heads attention, the MO
represents the mask operation on factorized heads for factorization-
heads attention, IDL means the interest disentanglement loss on
the positive and negative interest representations, and IBL means
the interest BPR loss on the positive and negative prediction logits.
From this table, we can have the following observations.
• Factorization of heads for transition attention weights is
important. Removing FHA and MO both show significant per-
formance drops, which means these two components are both

https://www.amazon.com
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Table 2: Overall evaluations for DFAR against baselines underMicro-video and Amazon datasets on fourmetrics. Here Improv.
is the improvement. Bold is the highest result and underline is the second highest result.

Models DIN Caser GRU4REC DIEN SASRec THA4Rec DFN FeedRec Ours Improv.

Micro-video

AUC 0.7345 0.8113 0.7983 0.7446 0.8053 0.8104 0.8342 0.8119 0.8578 2.83%
MRR 0.5876 0.6138 0.5927 0.5861 0.6046 0.6080 0.6321 0.6095 0.6568 3.91%
NDCG 0.6876 0.7079 0.6916 0.6861 0.7009 0.7035 0.7222 0.7047 0.7410 2.60%
GAUC 0.7703 0.8211 0.8041 0.7753 0.8120 0.8138 0.8362 0.8180 0.8545 2.19%

Amazon

AUC 0.6595 0.7192 0.7278 0.6688 0.6903 0.7069 0.6998 0.7037 0.7333 0.76%
MRR 0.4344 0.4846 0.4901 0.4547 0.4604 0.4599 0.4743 0.4675 0.4980 1.61%
NDCG 0.5669 0.6073 0.6114 0.5832 0.5883 0.5879 0.5990 0.5938 0.6175 1.00%
GAUC 0.6618 0.7245 0.7266 0.6859 0.7029 0.7021 0.7120 0.7079 0.7305 0.54%

Table 3: Effectiveness study of our proposed components.
FHA means factorization-heads attention; MO means label
mask operation on heads; IDL means interest disentangling
loss on positive and negative representations; IBL means in-
terest BPR loss on positive and negative logits.

Dataset Micro-video
Methods w/o FHA w/o MO w/o IDL w/o IBL Ours
AUC 0.8360 0.8473 0.8475 0.8364 0.8578
MRR 0.6198 0.6378 0.6377 0.6324 0.6568
NDCG 0.7127 0.7264 0.7264 0.7212 0.7410
GAUC 0.8319 0.8428 0.8436 0.8283 0.8545
Dataset Amazon
AUC 0.7133 0.7141 0.7284 0.7137 0.7333
MRR 0.4782 0.4883 0.4855 0.4839 0.4980
NDCG 0.6016 0.6095 0.6073 0.6057 0.6175
GAUC 0.7054 0.7137 0.7128 0.7047 0.7305

necessary to each other. Specifically, removing FHA means it is
impossible to apply the mask on the implicit head interaction of
either multi-heads attention or talking-heads attention. At the
same time, removing MO on FHA will cause it to fail to exploit
the prior knowledge of labels for historical items and degener-
ate to even as poor as multi-heads attention or talking-heads
attention in the Amazon dataset.

• Pair-wise interest is more important than disentangling
interest. Removing IDL and IBL will both drop the performance,
while removing IBL is more significant. This is because con-
trastive learning by BPR loss can indeed injectmore self-supervised
signals, while disentanglement solely tends to repel the dissimilar
representations of positive feedback and negative feedback.

4.4 Visualization for Attention Weights of
Heads (RQ3)

As illustrated in Eq.(8), our proposed factorization-heads attention
can factorize the relation between different feedback, which makes
it possible for us to study the attention weights between them.
Therefore, we perform visualization on the attention weights be-
tween positive and negative heads in Figure 4, where ℎ1 and ℎ2
(defined at (11)) represent heads for source and target behaviors,
respectively, with corresponding feedback. From this figure, we can
observe that: (1) For the collected Micro-video dataset, users are still

0 1
h2

0
1

h 1

0.2900 0.7100

0.4429 0.5571

0.3

0.4

0.5

0.6

0.7

0 1
h2

0
1

h 1

0.4104 0.5896

0.1301 0.8699
0.2

0.4

0.6

0.8

(a) Micro-video (b) Amazon
Figure 4: Visualization of accumulated attention weights be-
tween different heads. Here ℎ1 and ℎ2 represent the heads
for the source and target behaviors, respectively (i.e., if the
source behavior is negative and target behavior is positive,
we have ℎ1 = 0 and ℎ2 = 1). This illustrates our method can
factorize and extract the relation between different feedback
based on the proposed factorization-heads attention.

0~50 50~100 100~200 200~300 >300
Sequence Length

0.81

0.82

0.83

0.84

0.85

0.86

A
U

C

SASRec
THA4Rec
DFN
FeedRec
FAR

0~10 10~15 15~18 18~20 >20
Sequence Length

0.675

0.700

0.725

0.750

0.775

0.800

A
U

C

SASRec
THA4Rec
DFN
FeedRec
FAR

(a) Micro-video (b) Amazon
Figure 5: AUC performance comparisons under different se-
quence lengths on the Micro-video and Amazon datasets.

willing to watch videos even after they receive the disliked videos.
This may be because the negative recommended videos are of low
cost for users as they can easily skip the disliked videos, making
no significant impact on their later preferred videos; (2) For the
e-commerce dataset about Amazon, we can discover that when the
source feedback is negative, the probability of target feedback being
negative will increase sharply. This may be because the negative
purchased items are of high cost in e-commerce for users as it will
waste their money, increasing their unsatisfied emotion sharply.



4.5 The Impact of Sequence Length (RQ4)
On large-scale online platforms, active users often observe a lot
of items and generate very long historical item sequences, while
cold-start users are recorded with very short sequences. Long his-
torical item sequences can bring them more information but the
problem of gradient vanishing will increase, while short historical
item sequence brings limited information and tends to overfit the
model. Thus, we divide historical item sequences into five groups
based on their lengths and further study how DFAR outperforms
the attention-based models under different lengths, under Micro-
video and Amazon datasets, as illustrated in Figure 5. From the
visualization, we can observe that:
• DFAR is superior under different sequence lengths. It is ob-
vious that there is always a significant performance gap between
DFAR and other methods. In the Amazon dataset, where the se-
quence length is relatively short, the AUC performances increase
with the growth of sequence length for all methods. This means
a longer sequence can bring more information. However, in the
Micro-video dataset where the sequence length is relatively long,
the performances of all methods improve with the increase of
sequence length and reach their peak at around 50-100. But then
they all decline with the further increase in length. Most im-
portantly, our DFAR outperforms other methods significantly
throughout various sequence lengths.

• DFAR is stable under different sequence lengths. DFAR is
more stable with the sequence length increasing or decreasing,
even into very long or short. In the Amazon dataset, other meth-
ods first increase with the sequence length but fluctuate at 15-
20 while DFAR increases steadily with the sequence length. In
the Micro-video dataset, All methods drop sharply when the se-
quence length is too short or long, but our DFAR is more stable
and still keeps a decent AUC performance at 0.8382.

In summary, our DFAR is superior and robust under both long and
short historical item sequences.

5 RELATEDWORK
Sequential Recommendation Sequential Recommendation [32]
predicts the next interacted item of the given user based on his/her
historical items. As the early work, FPMC [24] exploits the Markov
chain to capture the transition pattern of historical item sequence
in the recommendation. Then some advanced deep learning meth-
ods such as RNN [5, 12] and attentive network [28] are applied
in recommendation [11, 14, 41, 42] to capture the chronological
transition patterns between historical items. While the evolution of
RNN-based methods should forward each hidden state one by one
and are difficult to parallel, attention-based methods can directly
capture the transition patterns among all historical items at any
time step. Furthermore, researchers also attempt to leverage convo-
lution neural network [16] to capture the union and point levels
sequential pattern in recommendation [27]. Compared with CNN-
based methods, attention-based methods are more effective for their
non-local view of self-attention [34]. However, the most existing se-
quential recommendation is based on click behavior. Recently, there
have been some methods of achieving sequential recommendations
beyond click behaviors [20]. For example, DFN [38] captures the
sequential patterns among click, unclick and dislike behaviors by
an internal module for each behavior and an external module to

purify noisy feedback under the guidance of precise but sparse feed-
back. CPRS [36] derives reading satisfaction from the completion
of users on certain news to facilitate click-based modeling. Based
on them, FeedRec [37] further enhances sequential modeling by
a heterogeneous transformer framework to capture the transition
patterns between user feedback such as click, dislike, follow, etc.
However, these works mainly focus on exploiting the auxiliary
feedback to enhance the modeling in the sequential recommenda-
tion, which does not consider the most important characteristic
- the transition patterns between historical positive and negative
feedback. Differently from them, our approach can factorize the
transition patterns between different feedback, achieving more
accurate modeling for sequential recommendation with both posi-
tive and negative feedback. Additionally, our approach extracts the
relation between positive and negative feedback at interest level.
Explainable Attention Attention methods are popular in many
machine learning fields such as recommender systems [14, 26, 40],
computer vision [7, 8, 17, 34] and natural language processing [1,
29], etc. Attention mechanisms are often explainable and have been
widely used in deep models to illustrate the learned representation
by visualizing the distribution of attention scores or weights under
specific inputs [4, 21, 35]. Some explainable attention methods are
also generalizable and can be equipped with many backbones. For
example, L2X [3] exploits Gumbel-softmax [13] for feature selection
by instance, with its hard attention design [39]. Moreover, VIBI [2]
further propose a feature score constraint in a global prior so as
to simplify and purify the explainable representation learning. As
self-attention is popular [6, 28], there is also a work that explains
what heads learn and concludes that some redundant heads can be
pruned [30]. In this work, we propose feedback-aware factorization-
heads attention to explicitly capture the transition pattern between
positive and negative feedback. The feedback mask matrix in our
attentionmodule can be treated as hard attention based on feedback.

6 CONCLUSIONS AND FUTUREWORK
In this work, we considered the positive and negative feedback
in the historical item sequence for the sequential recommenda-
tion, while existing works were mostly click-based and considered
solely positive feedback. Such exploration addressed the challenge
of current multi-head attention for different feedback interactions
in one sequence. More specifically, we first applied talking-heads
attention in the sequential recommendation and further proposed
feedback-aware factorization-heads attention to explicitly achieve
interaction across different heads for self-attention. Secondly, we
proposed disentanglement and pair-wise contrastive learning to
repel the dissimilar interests and capture the pair-wise relation be-
tween positive and negative feedback. In the future, we plan deploy
the model in industrial applications to validate online performance.
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A APPENDIX FOR REPRODUCIBILITY
A.1 Pseudocode

Listing 1: Pseudocode for Multi-heads Attention
1 def MultiHeadAttention (
2 X[n, d_X], # n vectors with dimensionality d_X
3 M[m, d_M], # m vectors with dimensionality d_M
4 P_q[d_X, d_k, h], # learned linear projection to produce

queries
5 P_k[d_M, d_k, h], # learned linear projection to produce

keys
6 P_v[d_M, d_v, h], # learned linear projection to produce

values
7 P_o[d_Y, d_v, h]): # learned linear projection of output
8 Q[n, d_k, h] = einsum (X[n, d_X], P_q[d_X, d_k, h])
9 K[m, d_k, h] = einsum (M[m, d_M], P_k[d_M, d_k, h])
10 V[m, d_v, h] = einsum (M[m, d_M], P_v[d_M, d_v, h])
11
12 L[n, m, h] = einsum (Q[n, d_k , h], K[m, d_k , h]) #

logits h*n*m* d_k
13
14 W[n, m, h] = softmax (L[n, m, h], reduced_dim =m) #

weights
15
16 O[n, d_v , h] = einsum (W[n, m, h], V[m, d_v , h]) #

h*n*m* d_v
17 Y[n, d_Y ] = einsum (O[n, d_v , h], P_o[d_Y , d_v , h])

# output h*n* d_Y * d_v
18 return Y[n, d_Y]

We follow talking-heads attention [25] and present the following
notation and pseudocode.

A.1.1 Notation. In our pseudocode, we follow talking-heads at-
tention [25] and have a notation as below.
• The capital letters represent the variable names, and lower-case
letters represent the number of dimensions. Each variable of a
tensor is presented with its dimensions. For example, a tensor for
an item sequence with batch size 𝑏, sequence length 𝑛, hidden
state 𝑑 is written as: X[b, n, d] [25].

• The einsum represents the generalized contractions between ten-
sors without any constraint on their dimension. Its computation
process is: (1) Broadcasting each input to have the union of all
dimensions, (2) multiplying component-wise, and (3) summing
across all dimensions not in the output. The dimensions are iden-
tified by the dimension-list annotations on the arguments and
on the result instead of being identified by an equation, as in
TensorFlow and NumPy. For example, multiplying two matrices
is written as: Z[a, c] = einsum (X[a, b], W[b, c]) [25].

A.1.2 Multi-heads Attention. The pseudocode for multi-heads
attention [28] is as shown in Pseudocode 1, where different heads
for Q and K do not interact with each other on line 12.

A.1.3 Talking-heads Attention. The pseudocode for talking-
heads attention [25] is as shown in Pseudocode 2, where different
heads for Q and K achieve implicit interaction by lines 15 and 18.

A.1.4 Factorization-heads Attention. The pseudocode for our
proposed factorization-heads attention is as shown in Pseudocode 3,
where different heads for Q and K achieve explicit interaction by
line 16.

Listing 2: Pseudocode for Talking-heads Attention
1 def TalkingHeadAttention (
2 X[n, d_X], # n vectors with dimensionality d_X
3 M[m, d_M], # m vectors with dimensionality d_M
4 P_q[d_X, d_k, h_k], # learned linear projection to produce

queries
5 P_k[d_M, d_k, h_k], # learned linear projection to produce

keys
6 P_v[d_M, d_v, h_v], # learned linear projection to produce

values
7 P_o[d_Y, d_v, h_v]
8 P_l [h_k , h], # talking - heads projection for logits
9 P_w [h, h_v]): # talking - heads projection for weights
10 Q[n, d_k, h_k] = einsum (X[n, d_X], P_q[d_X, d_k, h_k])
11 K[m, d_k, h_k] = einsum (M[m, d_M], P_k[d_M, d_k, h_k])
12 V[m, d_v, h_v] = einsum (M[m, d_M], P_v[d_M, d_v, h_v])
13
14 J[n, m, h_k] = einsum (Q[n, d_k, h_k], K[m, d_k, h_k])

# dot prod . n*m* d_k *h_k
15 L[n, m, h] = einsum (J[n, m, h_k], P_l [h_k, h]) #

Talking - heads proj . n*m*h* h_k
16
17 W[n, m, h] = softmax (L[n, m, h], reduced_dim=m) #

Attention weights
18 U[n, m, h_v] = einsum (W[n, m, h], P_w [h, h_v]) #

Talking - heads proj . n*m*h* h_v
19
20 O[n, d_v, h_v] = einsum (U[n, m, h_v], V[m, d_v, h_v])

# n*m* d_v * h_v
21 Y[n, d_Y] = einsum (O[n, d_v, h_v], P_o [d_Y, d_v,

h_v]) # n* d_Y * d_v * h_v
22 return Y[n, d_Y]

A.1.5 Comparison. From these three Python pseudocodes, we
can discover that our factorization-heads attention achieves head
interaction at a low cost. The comparison of it with multi-heads
attention and talking-heads attention are as below.
• Comparing with Multi-heads Attention: our factorization-
heads attention incorporates the interaction between different
heads with additional four lines at lines 12-14 and 17, which are
transpose and reshape operations and with only 𝑂 (1) temporal
complexity. 2.

• Comparingwith Talking-heads Attention: our factorization-
heads attention achieves explicit interactionwith additional trans-
pose and reshape operations at 𝑂 (1) temporal complexity while
talking-heads attention achieves implicit interactionwith twoma-
trix multiplication operations at𝑂 (𝑚×ℎ𝑘 ×ℎ) and𝑂 (𝑚×ℎ×ℎ𝑣)
temporal complexities 3, respectively.

2https://stackoverflow.com/questions/58279082/time-complexity-of-numpy-
transpose
3https://en.wikipedia.org/wiki/Computational_complexity_of_matrix_
multiplication

https://stackoverflow.com/questions/58279082/time-complexity-of-numpy-transpose
https://stackoverflow.com/questions/58279082/time-complexity-of-numpy-transpose
https://en.wikipedia.org/wiki/Computational_complexity_of_matrix_multiplication
https://en.wikipedia.org/wiki/Computational_complexity_of_matrix_multiplication


A.2 Evaluation Metrics
The detailed illustration of adopted evaluation metrics is as follows.
• AUC: Randomly selecting one positive item and one negative
item, it represents the probability that the predicted score of the
positive item is higher than that of the negative item. It tests the
model’s ability to classify the positive and negative items.

• GAUC: It weighs each user’s AUC based on his/her test set size.
It tests the model’s personalized classification ability on each user
as recommender systems indeed tend to rank preferred items for
users individually.

• MRR@K: It is the average of the reciprocal of the first hit item
ranking.

• NDCG@K: It assigns hit items that rank higher with more
weights and thus tests the model’s ability to rank the hit items
in higher and more confident positions.

A.3 Implementation Details
We implement all the models by a Microsoft 4 TensorFlow 5 frame-
work in Python, which is accessible here 6. We will publish the
Micro-video dataset to benefit the community in the future, and
the public Amazon dataset is accessible at this website 7.

The environment is as below.
• Anaconda 3
• Python 3.7.7
• TensorFlow 1.15.0

Besides, for other parameters, we stop the model training with
early stop step 2 and leverage the MLP layer sandwiched between
two normalization layers as the prediction tower for each model.

A.4 Hyper-parameter Study (RQ5)
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Figure 6: AUC performance of different auxiliary loss
weights w.r.t _𝐵𝑃𝑅 and _𝐷 under Micro-video and Amazon
datasets.

We perform hyper-parameter study on the weights for loss of
disentanglement and pair-wise contrastive Learning (w.r.t. _𝐵𝑃𝑅
and _𝐷 at Eq.(23)) as Figure 6, varying the loss weights from 10−4
to 10−1. From the figure, we can observe that the AUC performance
reaches the peak at 10−3 under the Amazon dataset while that
reaches the peak at 10−2 under the Micro-video dataset. This is
4https://github.com/microsoft/recommenders
5https://www.tensorflow.org
6https://anonymous.4open.science/r/DFAR-8B7B
7http://jmcauley.ucsd.edu/data/amazon/index_2014.html

because the rating for Amazon is a discrete value, but the playing
time for Micro-video is a continuous value. The partition of positive
and negative feedback based on continuous value is unclear and
thus requires more contrastive learning. Based on the above obser-
vation, we finally choose 10−3 and 10−2 as the best values for the
loss weights under Amazon and Micro-video datasets, respectively.

Listing 3: Pseudocode for Factorization-heads Attention
1 def FactorizationHeadAttention (
2 X[n, d_X], # n vectors with dimensionality d_X
3 M[m, d_M], # m vectors with dimensionality d_M
4 P_q[d_X, d_k, h], # learned linear projection to produce

queries
5 P_k[d_M, d_k, h], # learned linear projection to produce

keys
6 P_v[d_M, d_v, h], # learned linear projection to produce

values
7 P_o[d_Y, d_v, h]): # learned linear projection of output
8 Q[n, d_k, h] = einsum (X[n, d_X], P_q[d_X, d_k, h])
9 K[m, d_k, h] = einsum (M[m, d_M], P_k[d_M, d_k, h])
10 V[m, d_v, h] = einsum (M[m, d_M], P_v[d_M, d_v, h])
11
12 Q[n, h, d_k] = reshape(transpose(Q, [0, 2, 1]), [n * h,

d_k]) # queries h*n* d_X * d_k
13 K[d_k, h, m] = reshape(transpose(K, [1, 2, 0]), [d_k, h

* m]) # keys h*m* d_M * d_k
14 V[m, d_v, h * h] = tile(V[m, d_v, h], [1, 1, h]) #

values h*m* d_M * d_v
15
16 L[n * h, h * m] = einsum (Q[n * h, d_k], K_[d_k, h * m])
17 L[n, h * h, m] = transpose(reshape(L, [n, h * h, m]),

[0, 2, 1]) # logits h*h*n*m* d_k
18
19 W[n, m, h * h] = softmax (L[n, m, h * h],

reduced_dim=m) # weights
20 O[n, d_v , h * h] = einsum (W[n, m, h * h], V[m, d_v, h

* h]) # h*h*n*m* d_v
21 Y[n, d_Y] = einsum (O[n, d_v, h * h], P_o[d_Y, d_v, h *

h]) # output h*h*n* d_Y * d_v
22 return Y[n, d_Y]

https://github.com/microsoft/recommenders
https://www.tensorflow.org
https://anonymous.4open.science/r/DFAR-8B7B
http://jmcauley.ucsd.edu/data/amazon/index_2014.html
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